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Abstract—This paper proposes an approach to the fusion of 
multi-modal sensor data for the purpose of personnel intrusion 
detection. The focus is on using low cost non-imaging sensors 
for applications such as border crossings where issues of rapid 
deployment and power consumption are prevalent. The main 
challenge of fusing data from such sensors lies in the wide 
variation of granularity of classification that they may provide. 
While some sensors may provide detailed characteristics of the 
motion in a scene and therefore a very fine classification, 
others may only provide simple alerts and little detail. In order 
to fuse data from a wide range of sensors that are often 
designed for disparate applications, an approach based on the 
Dempster-Shafer theory of evidence is used. The implicit 
handling of uncertainty and ambiguous propositions leads to a 
convenient hierarchical approach that can represent data from 
numerous sensor modalities. 
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I.  INTRODUCTION 
The Dempster-Shafer (D-S) mass function is used in 

effect as a common representation of the heterogeneous 
sensor data. In order to cast each data source in this form, 
first the raw data is reduced to points in a multi-dimensional 
feature space specific to each sensor. From there, an 
approach is outlined that uses a distance metric in the 
feature space to assign mass to each state in the class 
hierarchy. This hierarchy begins with the full frame of 
discernment which represents complete uncertainty. From 
there it proceeds as an n-array tree broken down in to further 
subclasses until the finest granularity of classification for the 
specific sensor is reached. For an input point to be classified 
mass is assigned iteratively down the tree. In doing so, two 
key steps are taken. First, the uncertainty is estimated as a 
function of the ratio of the distance between the two closest 
child nodes. If the input point is deemed equidistant from 
the child nodes, there is a great deal of uncertainty and the 
mass function should reflect that. On the other hand, 
significant disparity indicates a much greater likelihood of 
one subclass. This distinction leads to the second step, 
where any mass not assigned to uncertainty is split between 
the child nodes as a function of the ratio of their distances. 
The final result is a representation of the likelihood of each 
singleton class, as well as all unions of these classes 

representing uncertain states. These D-S mass functions can 
now be fused using Dempster’s rule of combination, and 
classification rules can be derived to provide a more robust 
singular solution. 

The preceding approach is derived with simulated data, 
and subsequently demonstrated on two sensor modalities: an 
ultrasonic micro-Doppler sensor and a PIR profiling sensor. 
The ultrasonic sensor is able to extract human motion by 
identifying the periodicity of a human walker’s gait in the 
sensor field of view. The sensor can distinguish between a 
human, an unknown object in the scene, and background 
ambience. On the other hand the profiling sensor is capable 
of distinguishing a horse from a human. The sensor forms a 
2-D image of height versus time, and from this the 
orientation and eccentricity of the object are estimated and 
matched to known distributions of human and horse 
profiles. These two sensors illustrate the approach on 
differing hierarchies of class representations, and an 
example is given to show the fusion of the two data types. 
The paper concludes with a discussion of the results and in 
particular future directions of the work and how enhanced 
data sets could aid the evaluation of the approach. 

II. FUSION BACKGROUND 
The method outlined herein is developed based on the 

Dempster-Shafer theory of evidence. The implicit handling 
of uncertainty and ambiguous classes in this approach are 
particularly useful in applications of multi-modal sensor 
fusion. This approach allows combination of sensor outputs 
that effectively classify different sets of objects with varying 
levels of granularity. 

Much like in a discrete Bayesian approach, Dempster-
Shafer implementation begins by defining the frame of 
discernment �; the set that contains all possible outcomes 
ωq. A mass function assigns belief in each of these outcomes, 
but unlike a Bayesian probability mass function, mass can 
also be assigned to unions of outcomes representing 
uncertainty between them. In this context, the outcomes are 
specific actors or actions detectable in a scene such as a 
vehicle moving or a person walking, and any assignment to a 
union of outcomes indicates uncertainty in performing a finer 
classification. 
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Figure 4: Mass assignments from simulated 

Algorithm  Iterative Mass Computation 
Input: 
- d : vector contains distance from input to e
- Ti : sub tree tree rooted at node i, initially T
- r_mass: mass at root node, initially 1 
 
compute_ds_mass(d,T,r_mass) 
if (!children) 
    mass(i) = r_mass 
else 
    mass(i) = r_mass*exp(-α*max(d)/min(d)) 
    for j = 1:length(children) 
        mass(j) = (1-mass(i))*d(j)/sum(d) 
        compute_ds_mass(d,Tj,mass(j)) 
    end for 
end if 
 
Output: 
- mass: vector contains mass assigned to all 

Figure 3. Algorithm for computing mass fun
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which can be useful in discerning objects of different 
dimensions and orientations. 

Given a sample of the profiling data windowed in time, 
it is first necessary to subtract the values in each row from 
the mean of that row. This procedure produces a normalized 
image, and the standard deviation of the pixel intensity 
values serves as the first feature to discern an object in the 
scene. 

 

 
Figure 6a. Spectrogram of the down sampled and filtered signal 

 
Figure 6b. Summed energy signal 

 
Figure 6c. Autocorrelation and the computed peak 

Next the image is converted to a binary image by 
applying a threshold to the pixel intensities. The coordinates 
of all pixels that exceed the threshold are arranged in a two 
column matrix and the covariance matrix is computed. The 
eigen decomposition of this covariance matrix is performed. 
As described in [9], the objects orientation and eccentricity 
are estimated from these values. The orientation is estimated 
as the angle from the image x-axis to the eigenvector 

associated with the largest eigenvalue. The eccentricity is 
estimated by the ratio of the two eigenvalues. 

Figure 7a-c illustrates the steps of the feature extraction 
for a human sample. This figure includes the original image, 
the normalized image, and the threshold image. The 
computed major and minor axes of the image are overlaid on 
the threshold image for clarity. Note the image axes are not 
of equal scale, so although orthogonal axes are computed, 
they do not appear as such. 

 

 
Figure 7a. Original image from profiling sensor 

 
Figure 7b. Normalized image of profiling data 

 
Figure 7c. Threshold image from profiling data for feature extraction 
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C. Realization  
The realization of the D-S based approach is greatly 

simplified by the use of a class membership matrix, C, for 
all computations. Similar to a graph adjacency matrix, the 
class membership matrix takes on binary values to indicate 
to which parent classes each child class belongs, and 
conversely which classes are child classes of each parent. 
The matrix is populated as in equation (6). 
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=
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The parent classes to which a child belongs can now be 

determined by simply searching for 1 in the corresponding 
column. Similarly, the children of a class are found by 
searching the corresponding row. For example, each 
iteration of the algorithm depicted in Figure 3, the matrix is 
searched first for any columns with a sum of 1, indicating a 
top level node. The corresponding row is then searched to 
determine its children. The matrix is pared down and passed 
through each iteration until there are no child nodes left. 
This process is also used to ease the computation of belief 
and plausibility, as well as fused masses. For example, 
belief can be computed by simply multiplying the matrix by 
a vector of computed masses since each row selects a 
proposition that directly supports the corresponding class. 
Plausibility can be computed by performing a logical OR of 
the same row and column, selecting all indices in the mass 
function that do not contradict the corresponding class. 

D. Sample Fusion 
Using the aforementioned approaches, raw data from 

each of the two sensors is converted in to a feature space 
representation. The ultrasonic data set contains 88 samples of 
human motion, 43 samples of non-human motion, and 81 
samples of background with no motion. The profiling data 
set contains 92 samples of human motion, 43 samples of 
horse motion, and 102 samples of no motion. Figure 8a-b 
shows the distribution of training samples for both sensors in 
their respective feature space. 

It should be noted that although the data here is of similar 
objects, it was not collected concurrently and therefore does 
not provide a detailed assessment of improvement in 
classification accuracy. The goal here is only to illustrate the 
ability of the proposed approach to combine information 
from two disparate sensors, which provide different levels of 
classification. 

To provide an example of the fusion of these two sensors, 
one human sample is left out of each sensor’s data set. The 
prior distributions for all classes, including uncertainty, are 
computed using the remaining samples. The left out samples 
are treated as a coincident test sample, and from these each 
sensor model produces a D-S mass function. These mass 
functions are fused using Dempster’s rule of combination. 
Given in Table 1 is the resulting individual mass function 
computation of each sensor and the fused result of the two 

sensors. Table 1 follows the class hierarchy established in 
figure 5. 

In this example, the profiling sensor has substantial 
uncertainty in the class of the object. While a simple 
classification rule based on largest individual mass 
assignment would still assign the class label B for human, 
there is also significant mass assigned to both uncertainty 
and background. Clearly the profile of the human is narrow 
in time, which leads to small peaks. The small peaks cause 
some confusion with the background when considering the 
standard deviation of the pixels. The ultrasonic sensor 
similarly assigns the majority of mass to class B human, but 
in this case assigns substantial mass to class D. While it is 
near certain that motion has been detected in the scene, it is 
unclear whether the motion can be specifically ascribed to a 
human. Fusing these two results produces a much more 
convincing mass function. In this case, nearly all mass is 
assigned to support class B human. 

 

Figure 8a. Feature space plots of profiling training data 

  

Figure 8b. Feature space plot of ultrasonic micro-Doppler training data 

 
Table 1. Results of mass computation and fusion 

 
Sensor 

Class 
A B C D � 

Profiling 0.1899 0.5667 0.0415 0.0007 0.2012 
Ultrasonic 0.0150 0.5290 --- 0.4560 0.0001 

Fused 0.0075 0.8505 0.0242 0.1177 0.0001 
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V. SUMMARY 
Herein we provide an application of the Dempster-Shafer 

theory method for personnel detection.  The Dempster-
Shafer theory provides the capability of fusing orthogonal 
data from an ultrasonic micro-Doppler and PIR sensors. 
Utilizing two sets of real-world data from aforementioned 
sensors that were collected separately we complete an 
investigation of the benefits of sensor data fusion.  The 
application of the outlined approach provides a hierarchal 
approach to classification / discrimination through fusion of 
the disparate information resulting in a series of solutions 
with a greater confidence in comparison to a standalone 
sensor solution. In our analysis several areas of improvement 
result specifically the capability to have multiple classes and 
multiple confidence states for given problem.  The utilization 
of multiple classes afforded by the Dempster-Shafer theory 
increases the robustness and quality of the information from 
the given suite of sensors. 
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